
Adrian Bühlmann, adrian@cadifra.com

Converting a C++ application to modules
We have converted the C++ sources of our Cadifra UML Editor1 from using header files to
C++ 20 modules.

1 https://www.cadifra.com

StaticCanvas

Editor

Class, Object, State, Sequence, UseCase

Note

Connector TextBlock ScreenCanvas

View

Store

Canvas

FontUtil

Core

GraphUtil

App

xml

WinUtil

WinMsg d1

Converting to C++ modules Bühlmann 2025-03-24

The sources are organized into ~40 packages. Each package uses a C++ namespace with
the same name as the package. In the drawing above, you can see the most important
packages with their dependencies. The picture was drawn using our UML Editor. Some
less important packages have been omitted.

We had roughly one major class per *.h/*.cpp pair. We used forward declarations for
classes to minimize dependencies between packages, following the guideline by Herb
Sutter2:

Guideline: Never #include a header when a forward declaration will suffice.

First attempt
In a first naive attempt, I converted nearly every header file to an interface module (.ixx),
with the implementation module in the .cpp file.

Then I had a problem with the forward declarations. For example, for the interface
View.IShiftControl:

export module View.IShiftControl;

import Base.Forward;

import Core.Forward;

import d1.Point;
import d1.Shared;

namespace View
{

export class IShiftControl: public d1::Shared
{
 Core::IElement& itsElement;

public:
 IShiftControl(Core::IElement& m):
 itsElement{ m }
 {
 }

 auto Element() const -> Core::IElement& { return itsElement; }

 virtual void Shift(Core::Env&, const Base::ShiftVector&,
 const d1::fPoint& mouse_pos) = 0;

 virtual void Finalize(Core::Env&) = 0;

 IShiftControl(const IShiftControl&) = delete;
 IShiftControl& operator=(const IShiftControl&) = delete;
};

}

2 https://herbsutter.com/2013/08/19/gotw-7a-solution-minimizing-compile-time-dependencies-part-1/

2

Converting to C++ modules Bühlmann 2025-03-24

I imported Core.Forward, which contains forward declarations for all classes in the
package Core:

export module Core.Forward;

export namespace Core
{
class CopyRegistry;
class ElementSet;
class Env;
class ExtendSelectionParam;
class IClub;
class IDiagram;
class IDirtyMarker;
class IDirtyStateObserver;
...
}

The problem with this is, that according to the C++ 20 language specification, a name,
which is declared in a module, is attached to that module and must thus be defined in that
same module.

So, this didn’t work. But there is a – partial – solution for this.

Module partitions
I changed the line

export module Core.Forward;

to

export module Core:Forward;

thus replacing the dot (.) in the middle with a colon (:).

This now defines partition Forward of module Core.

So now, we have a bigger module named Core, which is separated (partitioned) into a
number of partitions.

Partitions are just a means for splitting the source files of an interface module (Core).

The same applies to, for example, View.IShiftControl, which must be changed to
View:IShiftControl accordingly.

The fun part now is, that all declarations in every partition of Core are attached to module
Core, not to a partition module.

Which in turn means, we can forward declare classes inside Core.

3

Converting to C++ modules Bühlmann 2025-03-24

To glue the partitions together, I created a file Core/Module.ixx, which contains:

export module Core;

export import :Contains;
export import :CopyRegistry;
export import :Elements;
export import :ElementSet;
export import :Env;
export import :Exceptions;
export import :ExtendSelectionParam;
export import :Finalizer;
export import :FollowUpJob;
export import :IClub;
export import :IDiagram;
export import :IDirtyMarker;
export import :IDirtyStateObserver;
export import :IDocumentChangeObserver;
export import :IElement;
export import :IElementPtr;
export import :IFilter;
export import :IGrid;

(etc.)

Then, wherever something from Core is needed somewhere, we have to

import Core;

Note that if a class outside of Core is used by reference (or a pointer), we now have to
import Core as well, since we cannot forward declare a class in a module, which is defined
in a different module. We also cannot use Core:Forward outside of Core.

Partitions can only be used inside a module anyway and may only be exported by the
primary interface of the module (Core/Module.ixx in our case).

Inside module Core, we can import the Forward partition with

import :Forward;

which imports the forward declarations of the classes of module Core into the current
partition.

Final remark
For the conversion to modules, no refactorings of our design were needed. The classes
were ready for the conversion.

4

	Converting a C++ application to modules
	First attempt
	Module partitions
	Final remark

